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Abstract: Based on the assumption that an S4 flavor symmetry is embedded into SU(3),

a lepton mass matrix model is investigated. A Froggatt-Nielsen type model is assumed,

and the flavor structures of the masses and mixing are caused by VEVs of SU(2)L-singlet

scalars φu and φd which are nonets (8+1) of the SU(3) flavor symmetry, and which are

broken into 2 + 3 + 3′ and 1 of S4. If we require the invariance under the transformation

(φ(8), φ(1)) → (−φ(8),+φ(1)) for the superpotential of the nonet field φ(8+1), the model leads

to a beautiful relation for the charged lepton masses. The observed tribimaximal neutrino

mixing is understood by assuming two SU(3) singlet right-handed neutrinos ν
(±)
R and an

SU(3) triplet scalar χ.
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1. Introduction

The observed mass spectra and mixings of the fundamental particles will provide promising

clues to unified understanding of the quarks and leptons. Especially, in the lepton sector,

the following characteristic features have been observed [1]:

(i) The observed charged lepton masses (me,mµ,mτ ) satisfy the relation [2, 3]

me + mµ + mτ =
2

3
(
√

me +
√

mµ +
√

mτ )
2, (1.1)

with remarkable precision;

(ii) The observed neutrino mixing Uν is approximately given by the so-called tribimaximal

mixing [4]

UTB =







2√
6

1√
3

0

− 1√
6

1√
3
− 1√

2

− 1√
6

1√
3

1√
2






. (1.2)

Such characteristic features have not been seen in the quark sector. For example, the mixing

form (1.2) suggests that the mixing can be described by Clebsh-Gordan-like coefficients,

while, for the Cabibbo-Kobayashi-Maskawa mixing in the quark sector, such a characteristic

feature has not been seen, although we have known some relations among the mixing angles

and quark mass ratios. Therefore, for a start, in the present paper, we investigate the lepton

masses and mixings.

In order to understand the relation (1.1), for example, we assume that there are three

scalars φi (i = 1, 2, 3), and the values of the charged lepton masses mei are proportional to

the square of the vacuum expectation values (VEVs) vi = 〈φi〉 of the scalars φi, mei = kv2
i
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(in the ref. [3, 5, 6], for instance, a seesaw type model (Me)ij = δijvi(ME)−1vj has been

assumed). We define singlet φσ and doublet (φπ, φη) of a permutation symmetry S3 [7] by







φπ

φη

φσ






=







0 − 1√
2

1√
2

2√
6
− 1√

6
− 1√

6
1√
3

1√
3

1√
3













φ1

φ2

φ3






, (1.3)

from the three objects (φ1, φ2, φ3), and we consider the following S3 invariant scalar po-

tential V (φ) [3, 8, 9]:

V (φ) = m2(φ2
π + φ2

η + φ2
σ) + λ1(φ

2
π + φ2

η + φ2
σ)2 + λ2φ

2
σ(φ2

π + φ2
η). (1.4)

The minimizing condition of the potential (1.4) leads to the relation

v2
π + v2

η = v2
σ. (1.5)

The relation (1.5) means

v2
1 + v2

2 + v2
3 =

2

3
(v1 + v2 + v3)

2, (1.6)

because

v2
1 + v2

2 + v2
3 = v2

π + v2
η + v2

σ = 2v2
σ = 2

(

v1 + v2 + v3√
3

)2

. (1.7)

Therefore, we can obtain the mass relation (1.1). Here, note that although the scalar

potential (1.4) is invariant under the S3 symmetry, but it is not a general one of the S3

invariant form. As pointed out in ref. [9], the scalar potential with a general form cannot

lead to the relation (1.5). For the derivation of the VEV relation (1.5), it is essential to

choose the specific form (1.4) of the S3 invariant terms. Similar formulation is also possible

for other discrete symmetries A4 [10] and S4 (see below). However, in such a symmetry,

we still need an additional specific selection rule. What is the meaning of such a specific

selection? In the present paper, we investigate this problem by assuming that the S4 flavor

symmetry is embedded into SU(3).

Recently, a superpotential which leads to the relation (1.5) has proposed by Ma [11]

on the basis of a symmetry Σ(81). Stimulated by the Ma’s idea, the author [10] has also

investigated a similar superpotential on the basis of a symmetry A4. Here, based on an

S4 flavor symmetry instead of the A4 symmetry, let us review the superpotential W which

gives the relation (1.5). We denote singlet and doublet of S4 as φσ and φD = (φπ, φη)
T ,

respectively, as well as those in S3. In order to write the superpotential for the scalar fields

φσ and doublet φD of S4, we put the following phenomenological rule [10]: the field φa

(a = σ,D) to the power nth, (φa)
n (n = 1, 2, 3), appears always accompanied with the

factor 1/n! in the superpotential W . Under this phenomenological rule, we can uniquely

write the superpotential of φσ and φD as

W (φ) =
1

2!
m

(

φ2
σ + φT

DφD

)

+ λ

(

1

2!
φσφT

DφD +
1

3!
φ3

σ

)
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=
1

2
m

(

φ2
σ + φ2

π + φ2
η

)

+
1

2
λ

[

(φ2
π + φ2

η)φσ +
1

3
φ3

σ

]

. (1.8)

The potential (1.8) can also lead the relation (1.5). What is the meaning of this phe-

nomenological rule?

On the other hand, we have to consider a mechanism which yields the charged lepton

masses mei ∝ v2
i , i.e. the effective Hamiltonian for the charged lepton sector

Heff
e =

[

ēL1(φ1)
2eR1 + ēL2(φ2)

2eR2 + ēL3(φ3)
2eR3

]

. (1.9)

We will propose a Froggatt-Nielsen type model [12], Heff
e = (ℓ̄LHd

LφφeR) in section 4.

Now, let us return the topic of the tribimaximal mixing. From the definition (1.2), we

can denote the fields (ψ1, ψ2, ψ3) as






ψ1

ψ2

ψ3






= UTB







ψη

ψσ

ψπ






. (1.10)

The observed neutrino mixing (1.2) means that when the mass eigenstates of the charged

leptons are given by the (ψ1, ψ2, ψ3) basis, the mass eigenstates of the neutrinos are given

by the (ψη, ψσ , ψπ) basis. Therefore, the problem is to find a model where the charged

lepton mass eigenstates are (e1, e2, e3), while the neutrino mass eigenstates are given by

(νη , νσ, νπ) with the masse hierarchy m2
η < m2

σ ≪ m2
π (or m2

π ≪ m2
η < m2

σ). In the

present paper, we will investigate such a model based on an S4 model. Here, note that the

fermions (ψ1, ψ2, ψ3) is a triplet of S4, but the basis (ψη , ψσ, ψπ) is not in any irreducible

representations of S4, while the scalar (φ1, φ2, φ3) is not irreducible representation of S4,

but (φπ, φη) and φσ are doublet and singlet of S4.

Thus, the characteristic features (1.1) and (1.2) in the lepton sector may be understood

from the language of S4 (also S3 or A4). However, as seen from the above review, the

characteristic features (1.1) and (1.2) cannot be understood from the S4 symmetry only. We

need some additional assumptions. In this paper, we will investigate these problems under

an assumption that the present S4 symmetry is embedded into an SU(3) symmetry [13].

In the next section, the singlet φσ and doublet (φπ, φη) will be understood as members of

a nonet scalar φ [1+8 of SU(3)], and the VEV relation (1.5) will be derived by requiring

that W (φ) is invariant under a Z2 symmetry.

We know that the three masses in any sectors of quarks and leptons are completly

different among them. Therefore, if we assume a flavor symmetry, the symmetry must

finally be broken completely. Usually, a relation which we derive in the exact symmetry

limit is only approximately satisfied under the symmetry breaking. Although we derive

the VEV relation (1.5) under the S4 symmetry, the problem is whether the VEV relation

(1.5) which is obtained under the S4 symmetry is spoiled or not when we introduce such

a symmetry breaking. In section 3, we will demonstrate that such a symmetry breaking

term without spoiling the relation (1.5) is indeed possible.

In section 4, in order to give the charged lepton masses and tribimaximal neutrino

mixing, we will discuss the effective Hamiltonian by assuming an Froggatt-Nelsen [12] type

model. Finally, section 5 will be devoted to the summary and concluding remarks.

– 3 –
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2. VEVs of SU(3) nonet scalars

The goal in the present section is to obtain the VEV relation (1.6) [i.e. (1.5)]. As seen in

the previous section, in order to obtain the desirable results (1.5), we need assume an equal

weight between the doublet and singlet terms of S4. In the present paper, we assume that

the S4 symmetry is embedded into an SU(3) symmetry. The doublet (φπ, φη) and singlet

φσ of S4 are embedded in the 6 and (8+1) of SU(3) [13]. In the present paper, we assume

that the doublet (φπ, φη) and singlet φσ originate in SU(3) octet and singlet, respectively.

The essential assumption in the present paper is that the fields φu and φd always appear

in the theory with the form of the nonet of U(3):

φ =







φ1
1 φ2

1 φ3
1

φ1
2 φ2

2 φ3
2

φ1
3 φ2

3 φ3
3






, (2.1)

where
φ1

1 = 1√
3
φσ + 2√

6
φη,

φ2
2 = 1√

3
φσ − 1√

6
φη − 1√

2
φπ,

φ3
3 = 1√

3
φσ − 1√

6
φη + 1√

2
φπ,

(2.2)

and the index f (f = u, d) has been dropped.

The outline to obtain the superpotential form (1.8) in the present scenairo is as follows:

The SU(3) invariant superpotential for the nonet fields φf (f = u, d) are given by

W (φf ) =
1

2
mfTr(φfφf ) +

1

2
√

3
λfTr(φfφfφf ). (2.3)

Since, in the next section, we want to assign chages +1 and −1 of a Z3 symmetry to

the fields φu and φd, respectively, we also assign the Z3 charges +1 and −1 to the mass

parameters mu and md in eq. (2.3), respectively. However, since we do not consider a mass

term Tr(φuφd), we do not consider a mass parameter with the Z3 charge zero. Hereafter,

in the present section, for convenience, we will drop the index f , since the cross terms

between φu and φd do not appear. In the superpotential (2.3), although the term Tr(φφ)

gives the desirable term φ2
π + φ2

η + φ2
σ + · · · of S4, the cubic term Tr(φφφ) gives

Tr(φφφ) =
√

3

[

1√
2

(

−φ2
π +

1

3
φ2

η

)

φη + (φ2
π + φ2

η)φσ +
1

3
φ3

σ

]

+ · · · , (2.4)

where the terms “· · · ” denote terms which include 3 and 3′ of the subgroup S4. Therefore,

the potential (2.3) cannot give the relation (1.5). We must drop the first term in the cubic

terms (2.4). For this purpose, we introduce a Z2 symmetry, and we assign the Z2 parities

−1 and +1 (the Z2 charges +1 and 0) for the octet part φ(8) and singlet part φ(1) of the

nonet field φ, respectively. The symmetry Z2 breaks U(3) into SU(3). (In other words, in

the present model, the flavor symmetry U(3) is explicitly broken from the begining by the

Z2 symmetry. ) Under the requirement of the Z2 invariance, i.e. the invariance under the

transformation

(φ(8), φ(1)) → (−φ(8),+φ(1)), (2.5)

– 4 –
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the terms Tr(φ(8)φ(8)φ(8)), i.e. (−φ2
π + (1/3)φ2

η)φη + · · · , are forbidden. Thus, the superpo-

tential (2.3) with the Z2 invariance leads to

W (φ) =
1

2
m

[

Tr(φ(8)φ(8)) + φ2
σ

]

+
1

2
λφσ

[

Tr(φ(8)φ(8)) +
1

3
φ2

σ

]

=
1

2
m

(

φ2
σ + φ2

π + φ2
η

)

+
1

2
λ

[

(φ2
π + φ2

η)φσ +
1

3
φ3

σ

]

+ · · · . (2.6)

The form (2.6) is just identical with (1.8) except for the “· · · ” terms. As we show below,

the potential (2.6) can give the desirable VEV relation (1.5) together with 〈φj
i 〉 = 0 (i 6= j).

From the superpotential (2.6) with the Z2 invariance, we obtain the VEV relation (1.5)

as follows: From the condition

∂W

∂(φ(8))ji
= m(φ(8))ij + λφσ(φ(8))ij = 0, (2.7)

we obtain

m + λφσ = 0, (2.8)

for (φ(8))ji 6= 0. By eliminating m from eq. (2.8) and the condition

∂W

∂φσ

= mφσ +
1

2
λ

[

Tr(φ(8)φ(8)) + φ2
σ

]

= 0, (2.9)

we obtain the relation

φ2
σ = Tr(φ(8)φ(8)) = φ2

π + φ2
η + · · · , (2.10)

where “· · · ” denotes the contributions of 3 and 3′ of S4.

The result (2.10) is still not our goal, because the relation contains the VEVs of the

3 and 3′ of S4. So far, we have not discussed the splitting among the S4 multiplets. Now,

we bring a soft symmetry breaking of SU(3) into S4 with an infinitesimal parameter ε into

the mass term of W (φ) as

Tr(φ(8)φ(8)) ⇒ φπφπ + φηφη + (1 + ε)
∑

i6=j

(φ(8))ji (φ
(8))ij , (2.11)

by hand. (At present, we do not refer the origin of the symmetry breaking. The SU(3)

flavor symmetry is explicitly (not spontaneously) broken with the order of ε.) Recall that

when we obtain the relation (2.8), we have assumed (φ(8))ji 6= 0. Now, the conditions (2.7)

are modified into the folloing conditions:

[(1 + ε)m + λφσ] (φ(8))ij = 0 (i 6= j), (2.12)

(m + λφσ)φa = 0 (a = π, η), (2.13)

Thefore, we must take either (φ(8))ij = 0 (i 6= j) or φa = 0 (a = π, η) for ε 6= 0. When we

choose the solution

〈(φ(8))ij〉 = 0 (i 6= j), (2.14)

– 5 –
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we can obtain the desiarable relation (1.5). (However, it is possible that we can also take

another solution with φπ = φη = 0 and (φ(8))ij 6= 0. The VEV solutions are not unique.

The result (1.5) is merely one of the possible solutions.)

Thus, we have obtained not only the desirable VEV relation (1.5), but also the results

(2.14). It should be worthwhile noticing that if we have assume the superpotential (2.3)

without requiring the Z2 invariance, we could obtain neither (1.5) nor (2.14).

3. Superpotential with symmetry breaking

Since we know that the three masses in any sectors of quarks and leptons are completely

different among them, we must consider that any flavor symmetry which we introduced

should finally be broken completely. Although the superpotential (1.8) can give the VEV

relation (1.5), it cannot fix the ratio vπ/vη . In order to fix the ratio vπ/vη , we consider

the existence of an S4 symmetry breaking term WSB . Then, the problem is whether the

VEV relation (1.5) which has been obtained under the S4 symmetry which is embedded

into SU(3) is spoiled or not by introducing such a symmetry breaking, because, usually, a

relation which we have derived under an exact symmetry is only approximately satisfied

under the symmetry breaking. In the present section, we will demonstrate that such a

symmetry breaking term without spoiling the relation (1.5) is indeed possible.

We consider that the S4 invariant superpotential (1.8) is softly broken. Since we want

vπ/vη 6= 1, the breaking should appear in the doublet part of S4. In order to express the S4

symmetry breaking term explicitly, we define the following symmetry breaking parameters

B(8) and B(1) with 3 × 3 matrix forms,

B(8) = diag

(

2√
6
bη,−

1√
6
bη −

1√
2
bπ,− 1√

6
bη +

1√
2
bπ

)

,

B(1) = diag

(

1√
3
bσ,

1√
3
bσ,

1√
3
bσ

)

, (3.1)

which behave as if those were octet and singlet of SU(3), respectively, where

bη =
√

2 sin β, bπ =
√

2 cos β, bσ = 1, (3.2)

and the factor
√

2 in eq. (3.2) has been chosen as b2
π + b2

η = 2 compared with b2
σ = 1. Then,

we can express the symmetry breaking term as the form

WSB =

√
3

2
εm

[

Tr(B(8)φ(8)φ(8)) + Tr(B(1)φ(1)φ(1))
]

=
1

2
εm

[

−2φπφη cos β − (φ2
π − φ2

η) sin β + φ2
σ

]

, (3.2)

where the factor
√

3/2 has been chosen as the coefficients in the expression (3.3) correspond

to those in the unbroken form (1.8). Although the term Tr(B(1)φ(1)φ(1)) = φ2
σ/

√
3 in (3.3)

does not break the S4 symmetry, it has been added by hand in order that the term WSB

(in other words, the parameter ε) does not affect the VEV relation (1.5).

– 6 –
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As the result, we can write the superpotential including the symmetry breaking term

as follows:

W =
1

2
m

{

φ2
π+φ2

η+(1 + ε)φ2
σ−ε

[

2φπφη cos β + (φ2
π−φ2

η) sin β
]}

+
1

2
λφσ

(

φ2
η+φ2

π+
1

3
φ2

σ

)

.

(3.4)

Since
∂W

∂φπ

= [m + λφσ − εm sin β]φπ − εmφη cos β, (3.5)

∂W

∂φη
= [m + λφσ + εm sin β] φη − εmφπ cos β, (3.6)

∂W

∂φσ
= m(1 + ε)φσ +

1

2
λ(φ2

π + φ2
η + φ2

σ), (3.7)

the minimizing conditions of the potential leads to the relations

tan β =
v2
π − v2

η

2vπvη

, (3.8)

v2
π + v2

η = v2
σ, (3.9)

m(1 + ε) + λvσ = 0. (3.10)

Note that the derivation of the relation (3.8) is independent of the explicit values of m, λ

and ε, and the derivation of the relation (3.9) is independent of the explicit values of m, λ,

ε and β. Thus, we can fix the value of vπ/vη by the parameter β in WSB without spoiling

the VEV relation (1.5) [(3.9)]. Also note that the limit me → 0 corresponds to the limit

vη → −vσ/
√

2 (i.e. v2
η = v2

π), so that the limit me → 0 corresponds to β → 0.

When we define the parameters zi =
√

mei/
√

me + mµ + mτ , from the observed val-

ues [1] of the charged lepton masses, we obtain the numerical values z1 = 0.016473,

z2 = 0.236869 and z3 = 0.971402, so that, for the VEVs of φa defined by eq. (1.3) [(2.2)],

we obtain zπ = 0.519393, zη = −0.479824 and zσ = 1/
√

2 = 0.707106. Therefore, we can

estimate the value of β as follows:

sinβ =
z2
η − z2

π

z2
η + z2

π

= 4z2
η − 1 = −0.079078, β = −4.5355◦, (3.11)

where we have chosen the phase convention of β as cos β = −2zπzη/(z
2
η + z2

π) > 0.

From the point of view of the prameter physics, the introducing the symmetry breaking

term (3.3) is merely replacing the parameter vπ/vη by another parameter β. What is

important is that we can indeed introduce a symmetry breaking term without spoiling the

relation (1.5).

4. Effective Hamiltonian

If we regard the scalars φu and φd as SU(2)L doublets, such a model with multi-Higgs

doublets causes a flavor changing neutral current (FCNC) problem. Therefore, we must

– 7 –
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Fields SU(2)L SU(3) S4 Z3 Z′
3 Z2

ℓL 2 3 3′ 0 0 0

eR 1 3 3′ 0 0 0

ν
(±)
R 1 1 1 0 0 0/+1

φu 1 1+8 1 + (2 + 3 + 3′) +1 +1 0/+1

φd 1 1+8 1 + (2 + 3 + 3′) −1 −1 0/+1

ξ(±) 1 1 1 0 −1 0/+1

χ 1 3 3′ +1 −1 0

Hu
L 2 1 1 +1 0 0

Hd
L 2 1 1 −1 0 0

ΦR 1 1 1 0 0 0

Table 1: SU(3) and S4 assignments of the fields.

consider that the fields φu and φd are SU(2)L singlets. In the present paper, we assume a

Froggatt-Nielsen [12] type model

Heff = yeℓLHd
L

φd

Λ

φd

Λ

ξ

Λ
eR + yνℓLHu

L

φu

Λ

χ

Λ
νR + yRνRΦRν∗

R, (4.1)

where ℓiL are SU(2)L doublet leptons ℓiL = (νiL, eiL), Hd
L and Hu

L are conventional SU(2)L
doublet Higgs scalars, φf (f = u, d), ξ and χ are SU(2)L singlet scalars, and Λ is a scale of

the effective theory. We consider that 〈φf 〉/Λ, 〈ξ〉/Λ and 〈χ〉/Λ are of the order of 1. The

scalar ΦR has been introduced in order to generate the Majorana mass MR of the right-

handed neutrino νR. As we note later, in the present model, the right-handed neutrinos

νR = (ν
(+)
R + ν

(−)
R )/

√
2 are singlets of the SU(3) flavor. The role of ξ = (ξ(+) + ξ(−))/

√
2

and χ will be explained later. In order to understand the appearance of the combinations

Hd
Lφdφdξ and Hu

Lφuχ, we assume two Z3 symmetries (Z3 and Z′
3 in table 1). Those quantum

number assignments are given in table 1. However, even with those quantum numbers, we

cannot distinguish the state φ†
f from φfφf . For example, the interaction ℓ̄LHdφ

†
dξeR is

possible in addition to the interaction ℓ̄LHdφdφdξeR. Although we have started from an

SUSY senario in the previous section, now, we have adopted an effective Hamiltonian which

is not renormalizable. Therefore, in principle, the interaction ℓ̄LHdφ
†
dξeR cannot be ruled

out. For the moment, in order to forbid such an undesirable term, we assume that the

fields which can appear in the effective Hamiltonian are confined to holomorphic ones.

4.1 Charged lepton sector

Recall that we have already assumed the invariance of the superpotential under the Z2

transformation (2.5) in order to drop the cubic part of the octet φ(8). Therefore, the term

φφ means φ(8)φ(8)+φ(1)φ(1) under the Z2 invariance. However, in order to give mei ∝ 〈φi
i〉2,

what we want is not φ(8)φ(8) +φ(1)φ(1), but φ(8)φ(8) +φ(1)φ(1) +φ(8)φ(1) +φ(1)φ(8). In order

to evade this problem, we introduce additional fields ξ(+) and ξ(−) whose Z2 parity are +1

and −1, respectively. The effective interactions in the charged lepton sector are given by

Heff
e =

ye√
2
ēi
L(φd)

j
i (φd)

k
j (ξ

(+) + ξ(−))eRk, (4.2)
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where we have dropped the Higgs scalar Hd
L since we discuss flavor structure only. The

expression (4.2) becomes

Heff
e =

ye√
2
ēL

[

(φ
(8)
d φ

(8)
d + φ

(1)
d φ

(1)
d )ξ(+) + (φ

(8)
d φ

(1)
d + φ

(1)
d φ

(8)
d )ξ(−)

]

eR. (4.3)

Since we have assumed that ξ(+) and ξ(−) appear symmetrically in the theory, we also

assume

〈ξ(+)〉 = 〈ξ(−)〉 ≡ vξ. (4.4)

Then, we obtain the effective Hamiltonian for the charged leptons

Heff
e =

yevdvξ√
2Λ3

∑

i

ēi
L〈(φ

(8+1)
d )ii〉2eRi, (4.5)

where vd = 〈Hd0
L 〉. Since the fields (φd)

i
i are defined by eq. (2.2), we can obtain the charged

lepton mass relation (1.1) from the VEV relation (1.6).

However, the present mechanism to obtain mei ∝ 〈φi
i〉2 is somewhat artificial. The

present mechanism will be improved in the future model. [Of course, there is a possibility

that the superpotential (2.3) must exactly be invariance under the Z2 symmetry, but the

effective Hamiltonian (4.1) does not need to be invariance under the Z2 symmetry. Then,

we can consider a model without ξ(±).]

4.2 Neutrino sector

In the present model, the right-handed neutrinos ν(±) are singlets of SU(3). Therefore, in

the neutrino seesaw mass matrix Mν = mν
LM−1

R (mν
L)T , MR is a 1 × 1 matrix and mν

L is a

3 × 1 matrix. In order to compensate for the absence of the conventional triplet neutrinos

νR, a new scalar χ which is a triplet of SU(3) has been introduced. The neutrino Dirac

mass terms are given by the following effective Hamiltonian

Heff
Dirac = yν

vu

Λ2
ν̄i

L〈(φu)ji 〉〈χj〉(ν(+)
R + ν

(−)
R ), (4.6)

where vu = 〈Hu0
L 〉. It is likely that the scalar potential V (χ) for the SU(3) triplet χ has a

specific VEV solution

〈χ1〉 = 〈χ2〉 = 〈χ3〉 ≡ vχ. (4.7)

When we assume the VEVs (4.7), we obtain

Heff
Dirac = yν

vuvχ√
2Λ2

(ν̄η ν̄σ ν̄π)L













vη

0

vπ






ν

(−)
R +







0

vσ

0






ν

(+)
R






, (4.8)

where va = 〈φua〉 (a = π, η, σ) (for convenience, we have dropped the index u). Therefore,

we obtain the effective neutrino mass matrix on the (η, σ, π) basis,

UT
TBMνUTB ≡ M (ησπ)

ν =
1

M
(−)
R







v2
η 0 vπvη

0 0 0

vπvη 0 v2
π






+

1

M
(+)
R







0 0 0

0 v2
σ 0

0 0 0






, (4.9)
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where M
(±)
R = y

(±)
R 〈ΦR〉, and we have dropped the common factors (yνvuvχ/

√
2Λ2)2. By

the way, the ratio vπ/vη cannot be determined from the potential (2.6), and the ratio is

determined by a soft S4 symmetry breaking term WSB which has been discussed in the

previous section. We can choose a solution vπ = 0 in the superpotential W (φu) by adjusting

the parameter β in WSB, differently from the case of W (φd). Then, the neutrino mass

matrix (4.9) becomes a diagonal form Dν = (1/M
(−)
R )diag(v2

η , 0, 0)+(1/M
(+)
R )diag(0, v2

σ , 0).

Since the mass matrix Mν on the (ν1, ν2, ν3) = (νe, νµ, ντ ) basis is given by

Mν = UTBM (ησπ)
ν UT

TB = UTBDνUT
TB, (4.10)

we can obtain the tribimaximal mixing

Uν = UTB , (4.11)

and the neutrino masses

mν1 = kv2
η , mν2 = kv2

σ, mν3 = 0, (4.12)

for the case of M
(+)
R = M

(−)
R ≡ MR, where k = (yνvuvχ)2/2MRΛ4 and (νη, νσ, νπ) has been

renamed (ν1, ν2, ν3) according to the conventional naming.

However, since we have taken vπ = 0, the value of vη satisfies v2
η = v2

σ from the relation

(1.5), so that the result (4.12) gives mν1 = mν2. The observed value [14] ∆m2
solar is small,

but it is not zero. Therefore, we must consider a small deviation between the first and

second terms in (4.9) (i.e. M
(+)
R 6= M

(−)
R ). Since the value M

(−)
R /M

(+)
R is free in the present

model, we cannot predict an explicit value of the ratio ∆m2
solar/∆m2

atm.

Since the present model gives an inverse hierarchy of the neutrino masses, the predicted

effective electron neutrino mass

〈mνe
〉 =

∣

∣

∣

∣

∣

∑

i

U2
eimνi

∣

∣

∣

∣

∣

≃ |mν1| ≃ |mν2| ≃
√

∆m2
atm = 5.23+0.25

−0.40 × 10−2 eV, (4.13)

where we have used the value [15] ∆m2
atm = 2.74+0.44

−0.26 × 10−3 eV2. This value (4.13) is

sufficiently sensitive to the next generation experiments of the neutrinoless double beta

decay.

5. Summary

In conclusion, on the basis of the S4 symmetry which is embedded into SU(3), we have

investigated a lepton mass model with the effectuve Hamiltonian of the Froggatt-Nielsen

type (4.1). We have assumed that the singlet and doublet of S4 originate in the singlet

and octet of SU(3), and we have obtained the VEV relation (1.5). In the derivation of

the VEV relation (1.5), the essential assumptions for the superpotential W (φf ) are the

following two: (i) the scalar fields φf always appear in terms of the nonet form (2.1) of

U(3); (ii) the superpotential W (φf ) is invariant under the Z2 transformation (2.5). Then,

we have obtained not only the VEV relation (1.5), but also 〈(φ(8))ji 〉 = 0 (i 6= j) for the

other components of φ(8) (i.e. 〈3〉 = 〈3′〉 = 0).

– 10 –
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In the charged lepton secter, in order to give mei ∝ 〈(φd)
i
i〉2, we have assumed new

scalars ξ(±). Although it has been reuired to compensate for the Z2 invariance, the model

seems to leave the door open to further improvement.

For the neutrino sector, we have obtained the tribimaximal mixing (1.2) by introducing

an SU(3) triplet scalar χ and the two SU(3) singlet right-handed neutrinos ν
(±)
R in addition

to the nonet scalar φu. In the present model, the right-handed neutrinos ν
(±)
R are singlets

of SU(3), the Majorana neutrino mass matrices M
(±)
R have no flavor structure. For the

neutrino mass spectrum, since the model gives mν1 = mν2 in the limit of M
(+)
R = M

(−)
R ,

we must consider a small deviation M
(+)
R 6= M

(−)
R . Since the value of M

(−)
R /M

(+)
R is

a free parameter in the present model, we cannot predict the value ∆m2
solar/∆m2

atm at

present, although the smallness of the ratio ∆m2
solar/∆m2

atm can be understood. Since

the present model gives an inverse hierarchy of the neutrino masses, we can predict the

effective electron neutrino mass 〈mνe
〉 ≃ 0.05 eV, which is sufficiently sensitive to the next

generation experiments of the neutrinoless double beta decay.

The present model seems to provide suggestive hints on seeking for a model which leads

to the tribimaximal mixing (1.2) and the charged lepton mass relation (1.1), although the

model has still many points which should be improved. At the same time, the model will

provide a clue to the quark mass matrix model from a point of unified view of the quarks

and leptons. The extension of the present model to the quark mass matrix model will be

given elsewhere.
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