S_{4} flavor symmetry embedded into $\operatorname{SU(3)}$ and lepton masses and mixing

Yoshio Koide
Institute for Higher Education Research and Practice, Osaka University, 1-16 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
E-mail: koide@het.phys.sci.osaka-u.ac.jp

Abstract: Based on the assumption that an S_{4} flavor symmetry is embedded into $\mathrm{SU}(3)$, a lepton mass matrix model is investigated. A Froggatt-Nielsen type model is assumed, and the flavor structures of the masses and mixing are caused by VEVs of $\mathrm{SU}(2)_{L}$-singlet scalars ϕ_{u} and ϕ_{d} which are nonets $(\mathbf{8}+\mathbf{1})$ of the $\mathrm{SU}(3)$ flavor symmetry, and which are broken into $\mathbf{2}+\mathbf{3}+\mathbf{3}^{\prime}$ and $\mathbf{1}$ of S_{4}. If we require the invariance under the transformation $\left(\phi^{(8)}, \phi^{(1)}\right) \rightarrow\left(-\phi^{(8)},+\phi^{(1)}\right)$ for the superpotential of the nonet field $\phi^{(8+1)}$, the model leads to a beautiful relation for the charged lepton masses. The observed tribimaximal neutrino mixing is understood by assuming two $\mathrm{SU}(3)$ singlet right-handed neutrinos $\nu_{R}^{(\pm)}$and an $\mathrm{SU}(3)$ triplet scalar χ.

Keywords: Discrete and Finite Symmetries, Neutrino Physics.

Contents

1. Introduction 1
2. VEVs of $\operatorname{SU}(3)$ nonet scalars G
3. Superpotential with symmetry breaking 6
4. Effective Hamiltonian 7
4.1 Charged lepton sector 8
4.2 Neutrino sector 9
5. Summary 10

1. Introduction

The observed mass spectra and mixings of the fundamental particles will provide promising clues to unified understanding of the quarks and leptons. Especially, in the lepton sector, the following characteristic features have been observed [1]:
(i) The observed charged lepton masses $\left(m_{e}, m_{\mu}, m_{\tau}\right)$ satisfy the relation [2, 3]

$$
\begin{equation*}
m_{e}+m_{\mu}+m_{\tau}=\frac{2}{3}\left(\sqrt{m_{e}}+\sqrt{m_{\mu}}+\sqrt{m_{\tau}}\right)^{2}, \tag{1.1}
\end{equation*}
$$

with remarkable precision;
(ii) The observed neutrino mixing U_{ν} is approximately given by the so-called tribimaximal mixing [4]

$$
U_{T B}=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \tag{1.2}\\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right) .
$$

Such characteristic features have not been seen in the quark sector. For example, the mixing form (1.2) suggests that the mixing can be described by Clebsh-Gordan-like coefficients, while, for the Cabibbo-Kobayashi-Maskawa mixing in the quark sector, such a characteristic feature has not been seen, although we have known some relations among the mixing angles and quark mass ratios. Therefore, for a start, in the present paper, we investigate the lepton masses and mixings.

In order to understand the relation (1.1), for example, we assume that there are three scalars $\phi_{i}(i=1,2,3)$, and the values of the charged lepton masses $m_{e i}$ are proportional to the square of the vacuum expectation values (VEVs) $v_{i}=\left\langle\phi_{i}\right\rangle$ of the scalars $\phi_{i}, m_{e i}=k v_{i}^{2}$
(in the ref. [3, 因, 6], for instance, a seesaw type model $\left(M_{e}\right)_{i j}=\delta_{i j} v_{i}\left(M_{E}\right)^{-1} v_{j}$ has been assumed). We define singlet ϕ_{σ} and doublet (ϕ_{π}, ϕ_{η}) of a permutation symmetry $\mathrm{S}_{3} 7$ by

$$
\left(\begin{array}{l}
\phi_{\pi} \tag{1.3}\\
\phi_{\eta} \\
\phi_{\sigma}
\end{array}\right)=\left(\begin{array}{ccc}
0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right)\left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right)
$$

from the three objects ($\phi_{1}, \phi_{2}, \phi_{3}$), and we consider the following S_{3} invariant scalar potential $V(\phi)$ (3), 8, (9):

$$
\begin{equation*}
V(\phi)=m^{2}\left(\phi_{\pi}^{2}+\phi_{\eta}^{2}+\phi_{\sigma}^{2}\right)+\lambda_{1}\left(\phi_{\pi}^{2}+\phi_{\eta}^{2}+\phi_{\sigma}^{2}\right)^{2}+\lambda_{2} \phi_{\sigma}^{2}\left(\phi_{\pi}^{2}+\phi_{\eta}^{2}\right) . \tag{1.4}
\end{equation*}
$$

The minimizing condition of the potential (1.4) leads to the relation

$$
\begin{equation*}
v_{\pi}^{2}+v_{\eta}^{2}=v_{\sigma}^{2} . \tag{1.5}
\end{equation*}
$$

The relation (1.5) means

$$
\begin{equation*}
v_{1}^{2}+v_{2}^{2}+v_{3}^{2}=\frac{2}{3}\left(v_{1}+v_{2}+v_{3}\right)^{2}, \tag{1.6}
\end{equation*}
$$

because

$$
\begin{equation*}
v_{1}^{2}+v_{2}^{2}+v_{3}^{2}=v_{\pi}^{2}+v_{\eta}^{2}+v_{\sigma}^{2}=2 v_{\sigma}^{2}=2\left(\frac{v_{1}+v_{2}+v_{3}}{\sqrt{3}}\right)^{2} . \tag{1.7}
\end{equation*}
$$

Therefore, we can obtain the mass relation (1.1). Here, note that although the scalar potential (1.4) is invariant under the S_{3} symmetry, but it is not a general one of the S_{3} invariant form. As pointed out in ref. [9], the scalar potential with a general form cannot lead to the relation (1.5). For the derivation of the VEV relation (1.5), it is essential to choose the specific form (1.4) of the S_{3} invariant terms. Similar formulation is also possible for other discrete symmetries A_{4} [10] and S_{4} (see below). However, in such a symmetry, we still need an additional specific selection rule. What is the meaning of such a specific selection? In the present paper, we investigate this problem by assuming that the S_{4} flavor symmetry is embedded into $\mathrm{SU}(3)$.

Recently, a superpotential which leads to the relation (1.5) has proposed by Ma 11 on the basis of a symmetry $\Sigma(81)$. Stimulated by the Ma's idea, the author 10 has also investigated a similar superpotential on the basis of a symmetry A_{4}. Here, based on an S_{4} flavor symmetry instead of the A_{4} symmetry, let us review the superpotential W which gives the relation (1.5). We denote singlet and doublet of S_{4} as ϕ_{σ} and $\phi_{D}=\left(\phi_{\pi}, \phi_{\eta}\right)^{T}$, respectively, as well as those in S_{3}. In order to write the superpotential for the scalar fields ϕ_{σ} and doublet ϕ_{D} of S_{4}, we put the following phenomenological rule [10]: the field ϕ_{a} $(a=\sigma, D)$ to the power n th, $\left(\phi_{a}\right)^{n}(n=1,2,3)$, appears always accompanied with the factor $1 / n!$ in the superpotential W. Under this phenomenological rule, we can uniquely write the superpotential of ϕ_{σ} and ϕ_{D} as

$$
W(\phi)=\frac{1}{2!} m\left(\phi_{\sigma}^{2}+\phi_{D}^{T} \phi_{D}\right)+\lambda\left(\frac{1}{2!} \phi_{\sigma} \phi_{D}^{T} \phi_{D}+\frac{1}{3!} \phi_{\sigma}^{3}\right)
$$

$$
\begin{equation*}
=\frac{1}{2} m\left(\phi_{\sigma}^{2}+\phi_{\pi}^{2}+\phi_{\eta}^{2}\right)+\frac{1}{2} \lambda\left[\left(\phi_{\pi}^{2}+\phi_{\eta}^{2}\right) \phi_{\sigma}+\frac{1}{3} \phi_{\sigma}^{3}\right] . \tag{1.8}
\end{equation*}
$$

The potential (1.8) can also lead the relation (1.5). What is the meaning of this phenomenological rule?

On the other hand, we have to consider a mechanism which yields the charged lepton masses $m_{e i} \propto v_{i}^{2}$, i.e. the effective Hamiltonian for the charged lepton sector

$$
\begin{equation*}
H_{e}^{\mathrm{eff}}=\left[\bar{e}_{L 1}\left(\phi_{1}\right)^{2} e_{R 1}+\bar{e}_{L 2}\left(\phi_{2}\right)^{2} e_{R 2}+\bar{e}_{L 3}\left(\phi_{3}\right)^{2} e_{R 3}\right] \tag{1.9}
\end{equation*}
$$

We will propose a Froggatt-Nielsen type model [12], $H_{e}^{\text {eff }}=\left(\bar{\ell}_{L} H_{L}^{d} \phi \phi e_{R}\right)$ in section 4.
Now, let us return the topic of the tribimaximal mixing. From the definition (1.2), we can denote the fields $\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$ as

$$
\left(\begin{array}{l}
\psi_{1} \tag{1.10}\\
\psi_{2} \\
\psi_{3}
\end{array}\right)=U_{T B}\left(\begin{array}{c}
\psi_{\eta} \\
\psi_{\sigma} \\
\psi_{\pi}
\end{array}\right) .
$$

The observed neutrino mixing (1.2) means that when the mass eigenstates of the charged leptons are given by the $\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$ basis, the mass eigenstates of the neutrinos are given by the $\left(\psi_{\eta}, \psi_{\sigma}, \psi_{\pi}\right)$ basis. Therefore, the problem is to find a model where the charged lepton mass eigenstates are $\left(e_{1}, e_{2}, e_{3}\right)$, while the neutrino mass eigenstates are given by $\left(\nu_{\eta}, \nu_{\sigma}, \nu_{\pi}\right)$ with the masse hierarchy $m_{\eta}^{2}<m_{\sigma}^{2} \ll m_{\pi}^{2}$ (or $m_{\pi}^{2} \ll m_{\eta}^{2}<m_{\sigma}^{2}$). In the present paper, we will investigate such a model based on an S_{4} model. Here, note that the fermions $\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$ is a triplet of S_{4}, but the basis $\left(\psi_{\eta}, \psi_{\sigma}, \psi_{\pi}\right)$ is not in any irreducible representations of S_{4}, while the scalar $\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ is not irreducible representation of S_{4}, but $\left(\phi_{\pi}, \phi_{\eta}\right)$ and ϕ_{σ} are doublet and singlet of S_{4}.

Thus, the characteristic features (1.1) and (1.2) in the lepton sector may be understood from the language of S_{4} (also S_{3} or A_{4}). However, as seen from the above review, the characteristic features (1.1) and (1.2) cannot be understood from the S_{4} symmetry only. We need some additional assumptions. In this paper, we will investigate these problems under an assumption that the present S_{4} symmetry is embedded into an $\mathrm{SU}(3)$ symmetry 13. In the next section, the singlet ϕ_{σ} and doublet $\left(\phi_{\pi}, \phi_{\eta}\right)$ will be understood as members of a nonet scalar $\phi[\mathbf{1}+\mathbf{8}$ of $\mathrm{SU}(3)]$, and the VEV relation (1.5) will be derived by requiring that $W(\phi)$ is invariant under a Z_{2} symmetry.

We know that the three masses in any sectors of quarks and leptons are completly different among them. Therefore, if we assume a flavor symmetry, the symmetry must finally be broken completely. Usually, a relation which we derive in the exact symmetry limit is only approximately satisfied under the symmetry breaking. Although we derive the VEV relation (1.5) under the S_{4} symmetry, the problem is whether the VEV relation (1.5) which is obtained under the S_{4} symmetry is spoiled or not when we introduce such a symmetry breaking. In section 3 , we will demonstrate that such a symmetry breaking term without spoiling the relation (1.5) is indeed possible.

In section 4, in order to give the charged lepton masses and tribimaximal neutrino mixing, we will discuss the effective Hamiltonian by assuming an Froggatt-Nelsen 12 type model. Finally, section 5 will be devoted to the summary and concluding remarks.

2. VEVs of $\mathrm{SU}(3)$ nonet scalars

The goal in the present section is to obtain the VEV relation (1.6) [i.e. (1.5)]. As seen in the previous section, in order to obtain the desirable results (1.5), we need assume an equal weight between the doublet and singlet terms of S_{4}. In the present paper, we assume that the S_{4} symmetry is embedded into an $\operatorname{SU}(3)$ symmetry. The doublet (ϕ_{π}, ϕ_{η}) and singlet ϕ_{σ} of S_{4} are embedded in the $\mathbf{6}$ and $(\mathbf{8}+\mathbf{1})$ of $\operatorname{SU}(3)$ (13]. In the present paper, we assume that the doublet $\left(\phi_{\pi}, \phi_{\eta}\right)$ and singlet ϕ_{σ} originate in $\operatorname{SU}(3)$ octet and singlet, respectively. The essential assumption in the present paper is that the fields ϕ_{u} and ϕ_{d} always appear in the theory with the form of the nonet of $\mathrm{U}(3)$:

$$
\phi=\left(\begin{array}{lll}
\phi_{1}^{1} & \phi_{1}^{2} & \phi_{1}^{3} \tag{2.1}\\
\phi_{2}^{1} & \phi_{2}^{2} & \phi_{2}^{3} \\
\phi_{3}^{1} & \phi_{3}^{2} & \phi_{3}^{3}
\end{array}\right),
$$

where

$$
\begin{align*}
& \phi_{1}^{1}=\frac{1}{\sqrt{3}} \phi_{\sigma}+\frac{2}{\sqrt{6}} \phi_{\eta}, \\
& \phi_{2}^{2}=\frac{1}{\sqrt{3}} \phi_{\sigma}-\frac{1}{\sqrt{6}} \phi_{\eta}-\frac{1}{\sqrt{2}} \phi_{\pi}, \tag{2.2}\\
& \phi_{3}^{3}=\frac{1}{\sqrt{3}} \phi_{\sigma}-\frac{1}{\sqrt{6}} \phi_{\eta}+\frac{1}{\sqrt{2}} \phi_{\pi},
\end{align*}
$$

and the index $f(f=u, d)$ has been dropped.
The outline to obtain the superpotential form (1.8) in the present scenairo is as follows: The $\operatorname{SU}(3)$ invariant superpotential for the nonet fields $\phi_{f}(f=u, d)$ are given by

$$
\begin{equation*}
W\left(\phi_{f}\right)=\frac{1}{2} m_{f} \operatorname{Tr}\left(\phi_{f} \phi_{f}\right)+\frac{1}{2 \sqrt{3}} \lambda_{f} \operatorname{Tr}\left(\phi_{f} \phi_{f} \phi_{f}\right) . \tag{2.3}
\end{equation*}
$$

Since, in the next section, we want to assign chages +1 and -1 of a Z_{3} symmetry to the fields ϕ_{u} and ϕ_{d}, respectively, we also assign the Z_{3} charges +1 and -1 to the mass parameters m_{u} and m_{d} in eq. (2.3), respectively. However, since we do not consider a mass term $\operatorname{Tr}\left(\phi_{u} \phi_{d}\right)$, we do not consider a mass parameter with the Z_{3} charge zero. Hereafter, in the present section, for convenience, we will drop the index f, since the cross terms between ϕ_{u} and ϕ_{d} do not appear. In the superpotential (2.3), although the term $\operatorname{Tr}(\phi \phi)$ gives the desirable term $\phi_{\pi}^{2}+\phi_{\eta}^{2}+\phi_{\sigma}^{2}+\cdots$ of S_{4}, the cubic term $\operatorname{Tr}(\phi \phi \phi)$ gives

$$
\begin{equation*}
\operatorname{Tr}(\phi \phi \phi)=\sqrt{3}\left[\frac{1}{\sqrt{2}}\left(-\phi_{\pi}^{2}+\frac{1}{3} \phi_{\eta}^{2}\right) \phi_{\eta}+\left(\phi_{\pi}^{2}+\phi_{\eta}^{2}\right) \phi_{\sigma}+\frac{1}{3} \phi_{\sigma}^{3}\right]+\cdots, \tag{2.4}
\end{equation*}
$$

where the terms " \ldots " denote terms which include $\mathbf{3}$ and $\mathbf{3}^{\prime}$ of the subgroup S_{4}. Therefore, the potential (2.3) cannot give the relation (1.5). We must drop the first term in the cubic terms (2.4). For this purpose, we introduce a Z_{2} symmetry, and we assign the Z_{2} parities -1 and +1 (the Z_{2} charges +1 and 0) for the octet part $\phi^{(8)}$ and singlet part $\phi^{(1)}$ of the nonet field ϕ, respectively. The symmetry Z_{2} breaks $\mathrm{U}(3)$ into $\mathrm{SU}(3)$. (In other words, in the present model, the flavor symmetry $\mathrm{U}(3)$ is explicitly broken from the begining by the Z_{2} symmetry.) Under the requirement of the Z_{2} invariance, i.e. the invariance under the transformation

$$
\begin{equation*}
\left(\phi^{(8)}, \phi^{(1)}\right) \rightarrow\left(-\phi^{(8)},+\phi^{(1)}\right), \tag{2.5}
\end{equation*}
$$

the terms $\operatorname{Tr}\left(\phi^{(8)} \phi^{(8)} \phi^{(8)}\right)$, i.e. $\left(-\phi_{\pi}^{2}+(1 / 3) \phi_{\eta}^{2}\right) \phi_{\eta}+\cdots$, are forbidden. Thus, the superpotential (2.3) with the Z_{2} invariance leads to

$$
\begin{align*}
W(\phi) & =\frac{1}{2} m\left[\operatorname{Tr}\left(\phi^{(8)} \phi^{(8)}\right)+\phi_{\sigma}^{2}\right]+\frac{1}{2} \lambda \phi_{\sigma}\left[\operatorname{Tr}\left(\phi^{(8)} \phi^{(8)}\right)+\frac{1}{3} \phi_{\sigma}^{2}\right] \\
& =\frac{1}{2} m\left(\phi_{\sigma}^{2}+\phi_{\pi}^{2}+\phi_{\eta}^{2}\right)+\frac{1}{2} \lambda\left[\left(\phi_{\pi}^{2}+\phi_{\eta}^{2}\right) \phi_{\sigma}+\frac{1}{3} \phi_{\sigma}^{3}\right]+\cdots \tag{2.6}
\end{align*}
$$

The form (2.6) is just identical with (1.8) except for the "..." terms. As we show below, the potential (2.6) can give the desirable VEV relation (1.5) together with $\left\langle\phi_{i}^{j}\right\rangle=0(i \neq j)$.

From the superpotential (2.6) with the Z_{2} invariance, we obtain the VEV relation (1.5) as follows: From the condition

$$
\begin{equation*}
\frac{\partial W}{\partial\left(\phi^{(8)}\right)_{i}^{j}}=m\left(\phi^{(8)}\right)_{j}^{i}+\lambda \phi_{\sigma}\left(\phi^{(8)}\right)_{j}^{i}=0 \tag{2.7}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
m+\lambda \phi_{\sigma}=0 \tag{2.8}
\end{equation*}
$$

for $\left(\phi^{(8)}\right)_{i}^{j} \neq 0$. By eliminating m from eq. (2.8) and the condition

$$
\begin{equation*}
\frac{\partial W}{\partial \phi_{\sigma}}=m \phi_{\sigma}+\frac{1}{2} \lambda\left[\operatorname{Tr}\left(\phi^{(8)} \phi^{(8)}\right)+\phi_{\sigma}^{2}\right]=0 \tag{2.9}
\end{equation*}
$$

we obtain the relation

$$
\begin{equation*}
\phi_{\sigma}^{2}=\operatorname{Tr}\left(\phi^{(8)} \phi^{(8)}\right)=\phi_{\pi}^{2}+\phi_{\eta}^{2}+\cdots \tag{2.10}
\end{equation*}
$$

where ". . " denotes the contributions of $\mathbf{3}$ and $\mathbf{3}^{\prime}$ of S_{4}.
The result (2.10) is still not our goal, because the relation contains the VEVs of the $\mathbf{3}$ and $\mathbf{3}^{\prime}$ of S_{4}. So far, we have not discussed the splitting among the S_{4} multiplets. Now, we bring a soft symmetry breaking of $\mathrm{SU}(3)$ into S_{4} with an infinitesimal parameter ε into the mass term of $W(\phi)$ as

$$
\begin{equation*}
\operatorname{Tr}\left(\phi^{(8)} \phi^{(8)}\right) \Rightarrow \phi_{\pi} \phi_{\pi}+\phi_{\eta} \phi_{\eta}+(1+\varepsilon) \sum_{i \neq j}\left(\phi^{(8)}\right)_{i}^{j}\left(\phi^{(8)}\right)_{j}^{i} \tag{2.11}
\end{equation*}
$$

by hand. (At present, we do not refer the origin of the symmetry breaking. The $\mathrm{SU}(3)$ flavor symmetry is explicitly (not spontaneously) broken with the order of ε.) Recall that when we obtain the relation (2.8), we have assumed $\left(\phi^{(8)}\right)_{i}^{j} \neq 0$. Now, the conditions (2.7) are modified into the folloing conditions:

$$
\begin{gather*}
{\left[(1+\varepsilon) m+\lambda \phi_{\sigma}\right]\left(\phi^{(8)}\right)_{j}^{i}=0 \quad(i \neq j),} \tag{2.12}\\
\left(m+\lambda \phi_{\sigma}\right) \phi_{a}=0 \quad(a=\pi, \eta) \tag{2.13}
\end{gather*}
$$

Thefore, we must take either $\left(\phi^{(8)}\right)_{j}^{i}=0(i \neq j)$ or $\phi_{a}=0(a=\pi, \eta)$ for $\varepsilon \neq 0$. When we choose the solution

$$
\begin{equation*}
\left\langle\left(\phi^{(8)}\right)_{j}^{i}\right\rangle=0 \quad(i \neq j) \tag{2.14}
\end{equation*}
$$

we can obtain the desiarable relation (1.5). (However, it is possible that we can also take another solution with $\phi_{\pi}=\phi_{\eta}=0$ and $\left(\phi^{(8)}\right)_{j}^{i} \neq 0$. The VEV solutions are not unique. The result (1.5) is merely one of the possible solutions.)

Thus, we have obtained not only the desirable VEV relation (1.5), but also the results (2.14). It should be worthwhile noticing that if we have assume the superpotential (2.3) without requiring the Z_{2} invariance, we could obtain neither (1.5) nor (2.14).

3. Superpotential with symmetry breaking

Since we know that the three masses in any sectors of quarks and leptons are completely different among them, we must consider that any flavor symmetry which we introduced should finally be broken completely. Although the superpotential (1.8) can give the VEV relation (1.5), it cannot fix the ratio v_{π} / v_{η}. In order to fix the ratio v_{π} / v_{η}, we consider the existence of an S_{4} symmetry breaking term $W_{S B}$. Then, the problem is whether the VEV relation (1.5) which has been obtained under the S_{4} symmetry which is embedded into $\mathrm{SU}(3)$ is spoiled or not by introducing such a symmetry breaking, because, usually, a relation which we have derived under an exact symmetry is only approximately satisfied under the symmetry breaking. In the present section, we will demonstrate that such a symmetry breaking term without spoiling the relation (1.5) is indeed possible.

We consider that the S_{4} invariant superpotential (1.8) is softly broken. Since we want $v_{\pi} / v_{\eta} \neq 1$, the breaking should appear in the doublet part of S_{4}. In order to express the S_{4} symmetry breaking term explicitly, we define the following symmetry breaking parameters $B^{(8)}$ and $B^{(1)}$ with 3×3 matrix forms,

$$
\begin{align*}
B^{(8)} & =\operatorname{diag}\left(\frac{2}{\sqrt{6}} b_{\eta},-\frac{1}{\sqrt{6}} b_{\eta}-\frac{1}{\sqrt{2}} b_{\pi},-\frac{1}{\sqrt{6}} b_{\eta}+\frac{1}{\sqrt{2}} b_{\pi}\right) \\
B^{(1)} & =\operatorname{diag}\left(\frac{1}{\sqrt{3}} b_{\sigma}, \frac{1}{\sqrt{3}} b_{\sigma}, \frac{1}{\sqrt{3}} b_{\sigma}\right) \tag{3.1}
\end{align*}
$$

which behave as if those were octet and singlet of $\mathrm{SU}(3)$, respectively, where

$$
\begin{equation*}
b_{\eta}=\sqrt{2} \sin \beta, \quad b_{\pi}=\sqrt{2} \cos \beta, \quad b_{\sigma}=1 \tag{3.2}
\end{equation*}
$$

and the factor $\sqrt{2}$ in eq. (3.2) has been chosen as $b_{\pi}^{2}+b_{\eta}^{2}=2$ compared with $b_{\sigma}^{2}=1$. Then, we can express the symmetry breaking term as the form

$$
\begin{align*}
W_{S B} & =\frac{\sqrt{3}}{2} \varepsilon m\left[\operatorname{Tr}\left(B^{(8)} \phi^{(8)} \phi^{(8)}\right)+\operatorname{Tr}\left(B^{(1)} \phi^{(1)} \phi^{(1)}\right)\right] \\
& =\frac{1}{2} \varepsilon m\left[-2 \phi_{\pi} \phi_{\eta} \cos \beta-\left(\phi_{\pi}^{2}-\phi_{\eta}^{2}\right) \sin \beta+\phi_{\sigma}^{2}\right] \tag{3.2}
\end{align*}
$$

where the factor $\sqrt{3} / 2$ has been chosen as the coefficients in the expression (3.3) correspond to those in the unbroken form (1.8). Although the term $\operatorname{Tr}\left(B^{(1)} \phi^{(1)} \phi^{(1)}\right)=\phi_{\sigma}^{2} / \sqrt{3}$ in (3.3) does not break the S_{4} symmetry, it has been added by hand in order that the term $W_{S B}$ (in other words, the parameter ε) does not affect the VEV relation (1.5).

As the result, we can write the superpotential including the symmetry breaking term as follows:

$$
\begin{equation*}
W=\frac{1}{2} m\left\{\phi_{\pi}^{2}+\phi_{\eta}^{2}+(1+\varepsilon) \phi_{\sigma}^{2}-\varepsilon\left[2 \phi_{\pi} \phi_{\eta} \cos \beta+\left(\phi_{\pi}^{2}-\phi_{\eta}^{2}\right) \sin \beta\right]\right\}+\frac{1}{2} \lambda \phi_{\sigma}\left(\phi_{\eta}^{2}+\phi_{\pi}^{2}+\frac{1}{3} \phi_{\sigma}^{2}\right) . \tag{3.4}
\end{equation*}
$$

Since

$$
\begin{align*}
& \frac{\partial W}{\partial \phi_{\pi}}=\left[m+\lambda \phi_{\sigma}-\varepsilon m \sin \beta\right] \phi_{\pi}-\varepsilon m \phi_{\eta} \cos \beta, \tag{3.5}\\
& \frac{\partial W}{\partial \phi_{\eta}}=\left[m+\lambda \phi_{\sigma}+\varepsilon m \sin \beta\right] \phi_{\eta}-\varepsilon m \phi_{\pi} \cos \beta, \tag{3.6}\\
& \frac{\partial W}{\partial \phi_{\sigma}}=m(1+\varepsilon) \phi_{\sigma}+\frac{1}{2} \lambda\left(\phi_{\pi}^{2}+\phi_{\eta}^{2}+\phi_{\sigma}^{2}\right), \tag{3.7}
\end{align*}
$$

the minimizing conditions of the potential leads to the relations

$$
\begin{align*}
\tan \beta & =\frac{v_{\pi}^{2}-v_{\eta}^{2}}{2 v_{\pi} v_{\eta}} \tag{3.8}\\
v_{\pi}^{2}+v_{\eta}^{2} & =v_{\sigma}^{2} \tag{3.9}\\
m(1+\varepsilon)+\lambda v_{\sigma} & =0 \tag{3.10}
\end{align*}
$$

Note that the derivation of the relation (3.8) is independent of the explicit values of m, λ and ε, and the derivation of the relation (3.9) is independent of the explicit values of m, λ, ε and β. Thus, we can fix the value of v_{π} / v_{η} by the parameter β in $W_{S B}$ without spoiling the VEV relation (1.5) [(3.9)]. Also note that the limit $m_{e} \rightarrow 0$ corresponds to the limit $v_{\eta} \rightarrow-v_{\sigma} / \sqrt{2}$ (i.e. $v_{\eta}^{2}=v_{\pi}^{2}$), so that the limit $m_{e} \rightarrow 0$ corresponds to $\beta \rightarrow 0$.

When we define the parameters $z_{i}=\sqrt{m_{e i}} / \sqrt{m_{e}+m_{\mu}+m_{\tau}}$, from the observed values (1) of the charged lepton masses, we obtain the numerical values $z_{1}=0.016473$, $z_{2}=0.236869$ and $z_{3}=0.971402$, so that, for the VEVs of ϕ_{a} defined by eq. (1.3) [(2.2)], we obtain $z_{\pi}=0.519393, z_{\eta}=-0.479824$ and $z_{\sigma}=1 / \sqrt{2}=0.707106$. Therefore, we can estimate the value of β as follows:

$$
\begin{equation*}
\sin \beta=\frac{z_{\eta}^{2}-z_{\pi}^{2}}{z_{\eta}^{2}+z_{\pi}^{2}}=4 z_{\eta}^{2}-1=-0.079078, \quad \beta=-4.5355^{\circ} \tag{3.11}
\end{equation*}
$$

where we have chosen the phase convention of β as $\cos \beta=-2 z_{\pi} z_{\eta} /\left(z_{\eta}^{2}+z_{\pi}^{2}\right)>0$.
From the point of view of the prameter physics, the introducing the symmetry breaking term (3.3) is merely replacing the parameter v_{π} / v_{η} by another parameter β. What is important is that we can indeed introduce a symmetry breaking term without spoiling the relation (1.5).

4. Effective Hamiltonian

If we regard the scalars ϕ_{u} and ϕ_{d} as $\mathrm{SU}(2)_{L}$ doublets, such a model with multi-Higgs doublets causes a flavor changing neutral current (FCNC) problem. Therefore, we must

Fields	$\mathrm{SU}(2)_{L}$	$\mathrm{SU}(3)$	S_{4}	Z_{3}	Z_{3}^{\prime}	Z_{2}
ℓ_{L}	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}^{\prime}$	0	0	0
e_{R}	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}^{\prime}$	0	0	0
$\nu_{R}^{(\pm)}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	$0 /+1$
ϕ_{u}	$\mathbf{1}$	$\mathbf{1 + 8}$	$\mathbf{1}+\left(\mathbf{2}+\mathbf{3}+\mathbf{3}^{\prime}\right)$	+1	+1	$0 /+1$
ϕ_{d}	$\mathbf{1}$	$\mathbf{1 + 8}$	$\mathbf{1}+\left(\mathbf{2}+\mathbf{3}+\mathbf{3}^{\prime}\right)$	-1	-1	$0 /+1$
$\xi^{(\pm)}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	-1	$0 /+1$
χ	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}^{\prime}$	+1	-1	0
H_{L}^{u}	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	+1	0	0
H_{L}^{d}	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	-1	0	0
Φ_{R}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	0

Table 1: $\mathrm{SU}(3)$ and S_{4} assignments of the fields.
consider that the fields ϕ_{u} and ϕ_{d} are $\mathrm{SU}(2)_{L}$ singlets. In the present paper, we assume a Froggatt-Nielsen 12 type model

$$
\begin{equation*}
H^{\mathrm{eff}}=y_{e} \bar{\ell}_{L} H_{L}^{d} \frac{\phi_{d}}{\Lambda} \frac{\phi_{d}}{\Lambda} \frac{\xi}{\Lambda} e_{R}+y_{\nu} \bar{\ell}_{L} H_{L}^{u} \frac{\phi_{u}}{\Lambda} \frac{\chi}{\Lambda} \nu_{R}+y_{R} \bar{\nu}_{R} \Phi_{R} \nu_{R}^{*}, \tag{4.1}
\end{equation*}
$$

where $\ell_{i L}$ are $\mathrm{SU}(2)_{L}$ doublet leptons $\ell_{i L}=\left(\nu_{i L}, e_{i L}\right), H_{L}^{d}$ and H_{L}^{u} are conventional $\mathrm{SU}(2)_{L}$ doublet Higgs scalars, $\phi_{f}(f=u, d), \xi$ and χ are $\operatorname{SU}(2)_{L}$ singlet scalars, and Λ is a scale of the effective theory. We consider that $\left\langle\phi_{f}\right\rangle / \Lambda,\langle\xi\rangle / \Lambda$ and $\langle\chi\rangle / \Lambda$ are of the order of 1 . The scalar Φ_{R} has been introduced in order to generate the Majorana mass M_{R} of the righthanded neutrino ν_{R}. As we note later, in the present model, the right-handed neutrinos $\nu_{R}=\left(\nu_{R}^{(+)}+\nu_{R}^{(-)}\right) / \sqrt{2}$ are singlets of the $\mathrm{SU}(3)$ flavor. The role of $\xi=\left(\xi^{(+)}+\xi^{(-)}\right) / \sqrt{2}$ and χ will be explained later. In order to understand the appearance of the combinations $H_{L}^{d} \phi_{d} \phi_{d} \xi$ and $H_{L}^{u} \phi_{u} \chi$, we assume two Z_{3} symmetries (Z_{3} and Z_{3}^{\prime} in table 1). Those quantum number assignments are given in table 1. However, even with those quantum numbers, we cannot distinguish the state ϕ_{f}^{\dagger} from $\phi_{f} \phi_{f}$. For example, the interaction $\bar{\ell}_{L} H_{d} \phi_{d}^{\dagger} \xi e_{R}$ is possible in addition to the interaction $\bar{\ell}_{L} H_{d} \phi_{d} \phi_{d} \xi e_{R}$. Although we have started from an SUSY senario in the previous section, now, we have adopted an effective Hamiltonian which is not renormalizable. Therefore, in principle, the interaction $\bar{\ell}_{L} H_{d} \phi_{d}^{\dagger} \xi e_{R}$ cannot be ruled out. For the moment, in order to forbid such an undesirable term, we assume that the fields which can appear in the effective Hamiltonian are confined to holomorphic ones.

4.1 Charged lepton sector

Recall that we have already assumed the invariance of the superpotential under the Z_{2} transformation (2.5) in order to drop the cubic part of the octet $\phi^{(8)}$. Therefore, the term $\phi \phi$ means $\phi^{(8)} \phi^{(8)}+\phi^{(1)} \phi^{(1)}$ under the Z_{2} invariance. However, in order to give $m_{e i} \propto\left\langle\phi_{i}^{i}\right\rangle^{2}$, what we want is not $\phi^{(8)} \phi^{(8)}+\phi^{(1)} \phi^{(1)}$, but $\phi^{(8)} \phi^{(8)}+\phi^{(1)} \phi^{(1)}+\phi^{(8)} \phi^{(1)}+\phi^{(1)} \phi^{(8)}$. In order to evade this problem, we introduce additional fields $\xi^{(+)}$and $\xi^{(-)}$whose Z_{2} parity are +1 and -1 , respectively. The effective interactions in the charged lepton sector are given by

$$
\begin{equation*}
H_{e}^{\mathrm{eff}}=\frac{y_{e}}{\sqrt{2}} \bar{e}_{L}^{i}\left(\phi_{d}\right)_{i}^{j}\left(\phi_{d}\right)_{j}^{k}\left(\xi^{(+)}+\xi^{(-)}\right) e_{R k}, \tag{4.2}
\end{equation*}
$$

where we have dropped the Higgs scalar H_{L}^{d} since we discuss flavor structure only. The expression (4.2) becomes

$$
\begin{equation*}
H_{e}^{\mathrm{eff}}=\frac{y_{e}}{\sqrt{2}} \bar{e}_{L}\left[\left(\phi_{d}^{(8)} \phi_{d}^{(8)}+\phi_{d}^{(1)} \phi_{d}^{(1)}\right) \xi^{(+)}+\left(\phi_{d}^{(8)} \phi_{d}^{(1)}+\phi_{d}^{(1)} \phi_{d}^{(8)}\right) \xi^{(-)}\right] e_{R} . \tag{4.3}
\end{equation*}
$$

Since we have assumed that $\xi^{(+)}$and $\xi^{(-)}$appear symmetrically in the theory, we also assume

$$
\begin{equation*}
\left\langle\xi^{(+)}\right\rangle=\left\langle\xi^{(-)}\right\rangle \equiv v_{\xi} . \tag{4.4}
\end{equation*}
$$

Then, we obtain the effective Hamiltonian for the charged leptons

$$
\begin{equation*}
H_{e}^{\mathrm{eff}}=\frac{y_{e} v_{d} v_{\xi}}{\sqrt{2} \Lambda^{3}} \sum_{i} \bar{e}_{L}^{i}\left\langle\left(\phi_{d}^{(8+1)}\right)_{i}^{i}\right\rangle^{2} e_{R i}, \tag{4.5}
\end{equation*}
$$

where $v_{d}=\left\langle H_{L}^{d 0}\right\rangle$. Since the fields $\left(\phi_{d}\right)_{i}^{i}$ are defined by eq. (2.2), we can obtain the charged lepton mass relation (1.1) from the VEV relation (1.6).

However, the present mechanism to obtain $m_{e i} \propto\left\langle\phi_{i}^{i}\right\rangle^{2}$ is somewhat artificial. The present mechanism will be improved in the future model. [Of course, there is a possibility that the superpotential (2.3) must exactly be invariance under the Z_{2} symmetry, but the effective Hamiltonian (4.1) does not need to be invariance under the Z_{2} symmetry. Then, we can consider a model without $\xi^{(\pm)}$.]

4.2 Neutrino sector

In the present model, the right-handed neutrinos $\nu^{(\pm)}$are singlets of $\mathrm{SU}(3)$. Therefore, in the neutrino seesaw mass matrix $M_{\nu}=m_{L}^{\nu} M_{R}^{-1}\left(m_{L}^{\nu}\right)^{T}, M_{R}$ is a 1×1 matrix and m_{L}^{ν} is a 3×1 matrix. In order to compensate for the absence of the conventional triplet neutrinos ν_{R}, a new scalar χ which is a triplet of $\mathrm{SU}(3)$ has been introduced. The neutrino Dirac mass terms are given by the following effective Hamiltonian

$$
\begin{equation*}
H_{\text {Dirac }}^{\mathrm{eff}}=y_{\nu} \frac{v_{u}}{\Lambda^{2}} \bar{\nu}_{L}^{i}\left\langle\left(\phi_{u}\right)_{i}^{j}\right\rangle\left\langle\chi_{j}\right\rangle\left(\nu_{R}^{(+)}+\nu_{R}^{(-)}\right), \tag{4.6}
\end{equation*}
$$

where $v_{u}=\left\langle H_{L}^{u 0}\right\rangle$. It is likely that the scalar potential $V(\chi)$ for the $\mathrm{SU}(3)$ triplet χ has a specific VEV solution

$$
\begin{equation*}
\left\langle\chi_{1}\right\rangle=\left\langle\chi_{2}\right\rangle=\left\langle\chi_{3}\right\rangle \equiv v_{\chi} . \tag{4.7}
\end{equation*}
$$

When we assume the VEVs (4.7), we obtain

$$
H_{\mathrm{Dirac}}^{\mathrm{eff}}=y_{\nu} \frac{v_{u} v_{\chi}}{\sqrt{2} \Lambda^{2}}\left(\bar{\nu}_{\eta} \bar{\nu}_{\sigma} \bar{\nu}_{\pi}\right)_{L}\left[\left(\begin{array}{c}
v_{\eta} \tag{4.8}\\
0 \\
v_{\pi}
\end{array}\right) \nu_{R}^{(-)}+\left(\begin{array}{c}
0 \\
v_{\sigma} \\
0
\end{array}\right) \nu_{R}^{(+)}\right],
$$

where $v_{a}=\left\langle\phi_{u a}\right\rangle(a=\pi, \eta, \sigma)$ (for convenience, we have dropped the index u). Therefore, we obtain the effective neutrino mass matrix on the (η, σ, π) basis,

$$
U_{T B}^{T} M_{\nu} U_{T B} \equiv M_{\nu}^{(\eta \sigma \pi)}=\frac{1}{M_{R}^{(-)}}\left(\begin{array}{ccc}
v_{\eta}^{2} & 0 & v_{\pi} v_{\eta} \tag{4.9}\\
0 & 0 & 0 \\
v_{\pi} v_{\eta} & 0 & v_{\pi}^{2}
\end{array}\right)+\frac{1}{M_{R}^{(+)}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & v_{\sigma}^{2} & 0 \\
0 & 0 & 0
\end{array}\right),
$$

where $M_{R}^{(\pm)}=y_{R}^{(\pm)}\left\langle\Phi_{R}\right\rangle$, and we have dropped the common factors $\left(y_{\nu} v_{u} v_{\chi} / \sqrt{2} \Lambda^{2}\right)^{2}$. By the way, the ratio v_{π} / v_{η} cannot be determined from the potential (2.6), and the ratio is determined by a soft S_{4} symmetry breaking term $W_{S B}$ which has been discussed in the previous section. We can choose a solution $v_{\pi}=0$ in the superpotential $W\left(\phi_{u}\right)$ by adjusting the parameter β in $W_{S B}$, differently from the case of $W\left(\phi_{d}\right)$. Then, the neutrino mass matrix (4.9) becomes a diagonal form $D_{\nu}=\left(1 / M_{R}^{(-)}\right) \operatorname{diag}\left(v_{\eta}^{2}, 0,0\right)+\left(1 / M_{R}^{(+)}\right) \operatorname{diag}\left(0, v_{\sigma}^{2}, 0\right)$. Since the mass matrix M_{ν} on the $\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right)$ basis is given by

$$
\begin{equation*}
M_{\nu}=U_{T B} M_{\nu}^{(\eta \sigma \pi)} U_{T B}^{T}=U_{T B} D_{\nu} U_{T B}^{T}, \tag{4.10}
\end{equation*}
$$

we can obtain the tribimaximal mixing

$$
\begin{equation*}
U_{\nu}=U_{T B}, \tag{4.11}
\end{equation*}
$$

and the neutrino masses

$$
\begin{equation*}
m_{\nu 1}=k v_{\eta}^{2}, \quad m_{\nu 2}=k v_{\sigma}^{2}, \quad m_{\nu 3}=0, \tag{4.12}
\end{equation*}
$$

for the case of $M_{R}^{(+)}=M_{R}^{(-)} \equiv M_{R}$, where $k=\left(y_{\nu} v_{u} v_{\chi}\right)^{2} / 2 M_{R} \Lambda^{4}$ and $\left(\nu_{\eta}, \nu_{\sigma}, \nu_{\pi}\right)$ has been renamed $\left(\nu_{1}, \nu_{2}, \nu_{3}\right)$ according to the conventional naming.

However, since we have taken $v_{\pi}=0$, the value of v_{η} satisfies $v_{\eta}^{2}=v_{\sigma}^{2}$ from the relation (1.5), so that the result (4.12) gives $m_{\nu 1}=m_{\nu 2}$. The observed value [14] $\Delta m_{\text {solar }}^{2}$ is small, but it is not zero. Therefore, we must consider a small deviation between the first and second terms in (4.9) (i.e. $\left.M_{R}^{(+)} \neq M_{R}^{(-)}\right)$. Since the value $M_{R}^{(-)} / M_{R}^{(+)}$is free in the present model, we cannot predict an explicit value of the ratio $\Delta m_{\text {solar }}^{2} / \Delta m_{\mathrm{atm}}^{2}$.

Since the present model gives an inverse hierarchy of the neutrino masses, the predicted effective electron neutrino mass

$$
\begin{equation*}
\left\langle m_{\nu_{e}}\right\rangle=\left|\sum_{i} U_{e i}^{2} m_{\nu i}\right| \simeq\left|m_{\nu 1}\right| \simeq\left|m_{\nu 2}\right| \simeq \sqrt{\Delta m_{\mathrm{atm}}^{2}}=5.23_{-0.40}^{+0.25} \times 10^{-2} \mathrm{eV}, \tag{4.13}
\end{equation*}
$$

where we have used the value [15] $\Delta m_{\text {atm }}^{2}=2.74_{-0.26}^{+0.44} \times 10^{-3} \mathrm{eV}^{2}$. This value (4.13) is sufficiently sensitive to the next generation experiments of the neutrinoless double beta decay.

5. Summary

In conclusion, on the basis of the S_{4} symmetry which is embedded into $\mathrm{SU}(3)$, we have investigated a lepton mass model with the effectuve Hamiltonian of the Froggatt-Nielsen type (4.1). We have assumed that the singlet and doublet of S_{4} originate in the singlet and octet of $\operatorname{SU}(3)$, and we have obtained the VEV relation (1.5). In the derivation of the VEV relation (1.5), the essential assumptions for the superpotential $W\left(\phi_{f}\right)$ are the following two: (i) the scalar fields ϕ_{f} always appear in terms of the nonet form (2.1) of $\mathrm{U}(3)$; (ii) the superpotential $W\left(\phi_{f}\right)$ is invariant under the Z_{2} transformation (2.5). Then, we have obtained not only the VEV relation (1.5), but also $\left\langle\left(\phi^{(8)}\right)_{i}^{j}\right\rangle=0(i \neq j)$ for the other components of $\phi^{(8)}$ (i.e. $\langle\boldsymbol{3}\rangle=\left\langle\mathbf{3}^{\prime}\right\rangle=0$).

In the charged lepton secter, in order to give $m_{e i} \propto\left\langle\left(\phi_{d}\right)_{i}^{i}\right\rangle^{2}$, we have assumed new scalars $\xi^{(\pm)}$. Although it has been reuired to compensate for the Z_{2} invariance, the model seems to leave the door open to further improvement.

For the neutrino sector, we have obtained the tribimaximal mixing (1.2) by introducing an $\operatorname{SU}(3)$ triplet scalar χ and the two $\mathrm{SU}(3)$ singlet right-handed neutrinos $\nu_{R}^{(\pm)}$in addition to the nonet scalar ϕ_{u}. In the present model, the right-handed neutrinos $\nu_{R}^{(\pm)}$are singlets of $\operatorname{SU}(3)$, the Majorana neutrino mass matrices $M_{R}^{(\pm)}$have no flavor structure. For the neutrino mass spectrum, since the model gives $m_{\nu 1}=m_{\nu 2}$ in the limit of $M_{R}^{(+)}=M_{R}^{(-)}$, we must consider a small deviation $M_{R}^{(+)} \neq M_{R}^{(-)}$. Since the value of $M_{R}^{(-)} / M_{R}^{(+)}$is a free parameter in the present model, we cannot predict the value $\Delta m_{\text {solar }}^{2} / \Delta m_{\mathrm{atm}}^{2}$ at present, although the smallness of the ratio $\Delta m_{\mathrm{solar}}^{2} / \Delta m_{\mathrm{atm}}^{2}$ can be understood. Since the present model gives an inverse hierarchy of the neutrino masses, we can predict the effective electron neutrino mass $\left\langle m_{\nu_{e}}\right\rangle \simeq 0.05 \mathrm{eV}$, which is sufficiently sensitive to the next generation experiments of the neutrinoless double beta decay.

The present model seems to provide suggestive hints on seeking for a model which leads to the tribimaximal mixing (1.2) and the charged lepton mass relation (1.1), although the model has still many points which should be improved. At the same time, the model will provide a clue to the quark mass matrix model from a point of unified view of the quarks and leptons. The extension of the present model to the quark mass matrix model will be given elsewhere.

Acknowledgments

The author would like to thank E. Takasugi, T. Fukuyama and H. Fusaoka for helpful conversations. Especially, the author is much indebted to N. Haba for his valuable contribution to the improvement on the previous version. He also indebted to H. Fusaoka for the phase convention of S_{4}. This work is supported by the Grant-in-Aid for Scientific Research, Ministry of Education, Science and Culture, Japan (No.18540284).

References

[1] Particle Data Group W.-M. Yao et al., Review of particle physics, J. Phys. G 33 (2006) 1.
[2] Y. Koide, Fermion-boson two-body model of quarks and leptons and Cabibbo mixing, Lett. Nuovo Cim. 34 (1982) 201; A fermion - boson composite model of quarks and leptons, Phys. Lett. B 120 (1983) 161; A new view of quark and lepton mass hierarchy, Phys. Rev. D 28 (1983) 252 .
[3] Y. Koide, Charged lepton mass sum rule from $\mathrm{U}(3)$ family Higgs potential model, Mod. Phys. Lett. A 5 (1990) 2319.
[4] S. Pakvasa and H. Sugawara, Mass of the t quark in $\mathrm{SU}(2) \times \mathrm{U}(1)$, Phys. Lett. B 82 (1979) 105;
Y. Yamanaka, H. Sugawara and S. Pakvasa, Permutation symmetries and the fermion mass matrix, Phys. Rev. D 25 (1982) 1895 [Erratum ibid. D29 (1984) 2135];
P.F. Harrison, D.H. Perkins and W.G. Scott, A redetermination of the neutrino mass-squared difference in tri-maximal mixing with terrestrial matter effects, Phys. Lett. B 458 (1999) 79 hep-ph/9904297; Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 hep-ph/0202074;
Z.-Z. Xing, Nearly tri-bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 hep-ph/0204049;
P.F. Harrison and W.G. Scott, Symmetries and generalisations of tri-bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 hep-ph/0203209; Permutation symmetry, tri-bimaximal neutrino mixing and the $S 3$ group characters, Phys. Lett. B 557 (2003) 76 hep-ph/0302025;
E. Ma, Form invariance of the neutrino mass matrix, Phys. Rev. Lett. 90 (2003) 221802 hep-ph/0303126;
C.I. Low and R.R. Volkas, Tri-bimaximal mixing, discrete family symmetries and a conjecture connecting the quark and lepton mixing matrices, Phys. Rev. D 68 (2003) 033007

hep-ph/0305243;

X.G. He and A. Zee, Some simple mixing and mass matrices for neutrinos, Phys. Lett. B 560 (2003) 87 hep-ph/0301092;
R.N. Mohapatra, S. Nasri and H.-B. Yu, S_{3} symmetry and tri-bimaximal mixing, Phys. Lett. B 639 (2006) 318 hep-ph/0605020.
[5] Y. Koide and H. Fusaoka, Top quark mass enhancement in a seesaw type quark mass matrix, Z. Physik C 71 (1996) 459 hep-ph/9505201.
[6] Y. Koide and M. Tanimoto, U(3)-family nonet Higgs boson and its phenomenology, Z. Physih C 72 (1996) 333 hep-ph/9505333.
[7] S. Pakvasa and H. Sugawara, Discrete symmetry and cabibbo angle, Phys. Lett. B 73 (1978) 61;
H. Harari, H. Haut and J. Weyers, Quark masses and cabibbo angles, Phys. Lett. B 78 (1978) 459;
J.M. Frere, On the use of permutation symmetry, Phys. Lett. B 80 (1979) 369;
E. Derman, Flavor unification, tau decay and B decay within the six quark six lepton Weinberg-Salam model, Phys. Rev. D 19 (1979) 317;
D. Wyler, The cabibbo angle in the $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)$ gauge theories, Phys. Rev. D 19 (1979) 330.
[8] Y. Koide, Universal seesaw mass matrix model with an S_{3} symmetry, Phys. Rev. D 60 (1999) 077301 hep-ph/9905416.
[9] Y. Koide, Permutation symmetry S_{3} and vev structure of flavor- triplet Higgs scalars, Phys. Rev. D 73 (2006) 057901 hep-ph/0509214; Universal seesaw mass matrix model with an S_{3} symmetry, Phys. Rev. D 60 (1999) 077301 hep-ph/9905416.
[10] Y. Koide, A_{4} symmetry and lepton masses and mixing, hep-ph/0701018.
[11] E. Ma, Lepton family symmetry and possible application to the koide mass formula, Phys. Lett. B 649 (2007) 287 hep-ph/0612022.
[12] C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277.
[13] C. Hagedorn, M. Lindner and R.N. Mohapatra, S_{4} flavor symmetry and fermion masses: towards a grand unified theory of flavor, JHEP 06 (2006) 042 hep-ph/0602244.
[14] SNO collaboration, B. Aharmim et al., Electron energy spectra, fluxes and day-night asymmetries of B-8 solar neutrinos from the 391-day salt phase sno data set, Phys. Rev. \mathbf{C} 72 (2005) 055502 nucl-ex/0502021;
KamLAND collaboration, T. Araki et al., Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion, Phys. Rev. Lett. 94 (2005) 081801 hep-ex/0406035.
[15] MINOS collaboration, D.G. Michael et al., Observation of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam, Phys. Rev. Lett. 97 (2006) 191801 hep-ex/0607088;
Super-Kamiokande collaboration, J. Hosaka et al., Three flavor neutrino oscillation analysis of atmospheric neutrinos in Super-Kamiokande, Phys. Rev. D 74 (2006) 032002 hep-ex/0604011.

